Convert li(里) to arm length
Learn how to convert
1
li(里) to
arm length
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(li(里)\right)={\color{rgb(20,165,174)} x}\left(arm \text{ } length\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(li(里)\right) = {\color{rgb(89,182,91)} 5.0 \times 10^{2}\left(meter\right)} = {\color{rgb(89,182,91)} 5.0 \times 10^{2}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(arm \text{ } length\right) = {\color{rgb(125,164,120)} 0.7\left(meter\right)} = {\color{rgb(125,164,120)} 0.7\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(li(里)\right)={\color{rgb(20,165,174)} x}\left(arm \text{ } length\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{2}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.7}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 5.0 \times 10^{2}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.7} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.7} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(5.0 \times 10^{2} = {\color{rgb(20,165,174)} x} \times 0.7\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 0.7 = 5.0 \times 10^{2}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{0.7}\right)\)
\({\color{rgb(20,165,174)} x} \times 0.7 \times \dfrac{1.0}{0.7} = 5.0 \times 10^{2} \times \dfrac{1.0}{0.7}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.7}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.7}}} = 5.0 \times 10^{2} \times \dfrac{1.0}{0.7}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{5.0 \times 10^{2}}{0.7}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx714.28571429\approx7.1429 \times 10^{2}\)
\(\text{Conversion Equation}\)
\(1.0\left(li(里)\right)\approx{\color{rgb(20,165,174)} 7.1429 \times 10^{2}}\left(arm \text{ } length\right)\)