# Convert light-year to pouce

Learn how to convert 1 light-year to pouce step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(light-year\right)={\color{rgb(20,165,174)} x}\left(pouce\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(light-year\right) = {\color{rgb(89,182,91)} 9.4607304725808 \times 10^{15}\left(meter\right)} = {\color{rgb(89,182,91)} 9.4607304725808 \times 10^{15}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(pouce\right) = {\color{rgb(125,164,120)} 0.02707\left(meter\right)} = {\color{rgb(125,164,120)} 0.02707\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(light-year\right)={\color{rgb(20,165,174)} x}\left(pouce\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 9.4607304725808 \times 10^{15}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.02707}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 9.4607304725808 \times 10^{15}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.02707} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 9.4607304725808 \times 10^{15}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.02707} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$9.4607304725808 \times 10^{15} = {\color{rgb(20,165,174)} x} \times 0.02707$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 0.02707 = 9.4607304725808 \times 10^{15}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{0.02707}\right)$$
$${\color{rgb(20,165,174)} x} \times 0.02707 \times \dfrac{1.0}{0.02707} = 9.4607304725808 \times 10^{15} \times \dfrac{1.0}{0.02707}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.02707}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.02707}}} = 9.4607304725808 \times 10^{15} \times \dfrac{1.0}{0.02707}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{9.4607304725808 \times 10^{15}}{0.02707}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx3.4949133626 \times 10^{17}\approx3.4949 \times 10^{17}$$
$$\text{Conversion Equation}$$
$$1.0\left(light-year\right)\approx{\color{rgb(20,165,174)} 3.4949 \times 10^{17}}\left(pouce\right)$$