# Convert linear foot to finger

Learn how to convert 1 linear foot to finger step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(linear \text{ } foot\right)={\color{rgb(20,165,174)} x}\left(finger\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(linear \text{ } foot\right) = {\color{rgb(89,182,91)} 0.3048\left(meter\right)} = {\color{rgb(89,182,91)} 0.3048\left(m\right)}$$
$$\text{Right side: 1.0 } \left(finger\right) = {\color{rgb(125,164,120)} 0.1143\left(meter\right)} = {\color{rgb(125,164,120)} 0.1143\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(linear \text{ } foot\right)={\color{rgb(20,165,174)} x}\left(finger\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 0.3048} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.1143}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 0.3048} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.1143} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 0.3048} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.1143} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$0.3048 = {\color{rgb(20,165,174)} x} \times 0.1143$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 0.1143 = 0.3048$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{0.1143}\right)$$
$${\color{rgb(20,165,174)} x} \times 0.1143 \times \dfrac{1.0}{0.1143} = 0.3048 \times \dfrac{1.0}{0.1143}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.1143}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.1143}}} = 0.3048 \times \dfrac{1.0}{0.1143}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.3048}{0.1143}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx2.6666666667\approx2.6667$$
$$\text{Conversion Equation}$$
$$1.0\left(linear \text{ } foot\right)\approx{\color{rgb(20,165,174)} 2.6667}\left(finger\right)$$