# Convert meter-candle to foot-candle

Learn how to convert 1 meter-candle to foot-candle step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(meter-candle\right)={\color{rgb(20,165,174)} x}\left(foot-candle\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(lux\right)$$
$$\text{Left side: 1.0 } \left(meter-candle\right) = {\color{rgb(89,182,91)} 1.0\left(lux\right)} = {\color{rgb(89,182,91)} 1.0\left(lx\right)}$$
$$\text{Right side: 1.0 } \left(foot-candle\right) = {\color{rgb(125,164,120)} 10.746\left(lux\right)} = {\color{rgb(125,164,120)} 10.746\left(lx\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(meter-candle\right)={\color{rgb(20,165,174)} x}\left(foot-candle\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(lux\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10.746}} \times {\color{rgb(125,164,120)} \left(lux\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(lx\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10.746} \cdot {\color{rgb(125,164,120)} \left(lx\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(lx\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10.746} \times {\color{rgb(125,164,120)} \cancel{\left(lx\right)}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10.746$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10.746$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10.746 = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10.746}\right)$$
$${\color{rgb(20,165,174)} x} \times 10.746 \times \dfrac{1.0}{10.746} = 1.0 \times \dfrac{1.0}{10.746}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10.746}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10.746}}} = 1.0 \times \dfrac{1.0}{10.746}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10.746}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.093057882\approx9.3058 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(meter-candle\right)\approx{\color{rgb(20,165,174)} 9.3058 \times 10^{-2}}\left(foot-candle\right)$$