Convert meter / square second to inch / (hour • second)
Learn how to convert
1
meter / square second to
inch / (hour • second)
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times second}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{meter}{square \text{ } second}\right) = {\color{rgb(89,182,91)} 1.0\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} 1.0\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{inch}{hour \times second}\right) = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times second}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\)
\(\text{Simplify}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}} = 1.0\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{3.6 \times 10^{3}}{2.54 \times 10^{-2}}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}} \times \dfrac{3.6 \times 10^{3}}{2.54 \times 10^{-2}} = 1.0 \times \dfrac{3.6 \times 10^{3}}{2.54 \times 10^{-2}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times {\color{rgb(166,218,227)} \cancel{3.6}} \times {\color{rgb(76,153,0)} \cancel{10^{3}}}}{{\color{rgb(166,218,227)} \cancel{3.6}} \times {\color{rgb(76,153,0)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = 1.0 \times \dfrac{3.6 \times 10^{3}}{2.54 \times 10^{-2}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.6 \times 10^{3}}{2.54 \times 10^{-2}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-2}}\text{ can be rewritten to }10^{2}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{2} \times 3.6 \times 10^{3}}{2.54}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{5} \times 3.6}{2.54}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx141732.28346\approx1.4173 \times 10^{5}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{meter}{square \text{ } second}\right)\approx{\color{rgb(20,165,174)} 1.4173 \times 10^{5}}\left(\dfrac{inch}{hour \times second}\right)\)