Convert mic to last

Learn how to convert 1 mic to last step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(mic\right)={\color{rgb(20,165,174)} x}\left(last\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(mic\right) = {\color{rgb(89,182,91)} 10^{-9}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 10^{-9}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(last\right) = {\color{rgb(125,164,120)} 1814.36948\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 1814.36948\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(mic\right)={\color{rgb(20,165,174)} x}\left(last\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-9}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1814.36948}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-9}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1814.36948} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-9}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1814.36948} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-9} = {\color{rgb(20,165,174)} x} \times 1814.36948\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1814.36948 = 10^{-9}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1814.36948}\right)\)
\({\color{rgb(20,165,174)} x} \times 1814.36948 \times \dfrac{1.0}{1814.36948} = 10^{-9} \times \dfrac{1.0}{1814.36948}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1814.36948}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1814.36948}}} = 10^{-9} \times \dfrac{1.0}{1814.36948}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-9}}{1814.36948}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx5.5115565546 \times 10^{-13}\approx5.5116 \times 10^{-13}\)
\(\text{Conversion Equation}\)
\(1.0\left(mic\right)\approx{\color{rgb(20,165,174)} 5.5116 \times 10^{-13}}\left(last\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.