Convert mile / (hour • second) to mile / square second
Learn how to convert
1
mile / (hour • second) to
mile / square second
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{mile}{hour \times second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } second}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{mile}{hour \times second}\right) = {\color{rgb(89,182,91)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{mile}{square \text{ } second}\right) = {\color{rgb(125,164,120)} 1609.344\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 1609.344\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{mile}{hour \times second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } second}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1609.344}{3.6 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1609.344}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1609.344}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1609.344} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1609.344}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1609.344} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{1609.344}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times 1609.344\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{1609.344}}}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1609.344}}\)
\(\text{Simplify}\)
\(\dfrac{1.0}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x}\)
Switch sides
\({\color{rgb(20,165,174)} x} = \dfrac{1.0}{3.6 \times 10^{3}}\)
Rewrite equation
\(\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{3.6}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0002777778\approx2.7778 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{mile}{hour \times second}\right)\approx{\color{rgb(20,165,174)} 2.7778 \times 10^{-4}}\left(\dfrac{mile}{square \text{ } second}\right)\)