Convert milliradian to minute of arc
Learn how to convert
1
milliradian to
minute of arc
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(milliradian\right)={\color{rgb(20,165,174)} x}\left(minute \text{ } of \text{ } arc\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(radian\right)\)
\(\text{Left side: 1.0 } \left(milliradian\right) = {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}\left(radian\right)} = {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}\left(rad\right)}\)
\(\text{Right side: 1.0 } \left(minute \text{ } of \text{ } arc\right) = {\color{rgb(125,164,120)} \dfrac{π}{1.08 \times 10^{4}}\left(radian\right)} = {\color{rgb(125,164,120)} \dfrac{π}{1.08 \times 10^{4}}\left(rad\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(milliradian\right)={\color{rgb(20,165,174)} x}\left(minute \text{ } of \text{ } arc\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{1.08 \times 10^{4}}}} \times {\color{rgb(125,164,120)} \left(radian\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{1.08 \times 10^{4}}} \cdot {\color{rgb(125,164,120)} \left(rad\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{1.08 \times 10^{4}}} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}\)
\(\text{Conversion Equation}\)
\(2.0 \times \dfrac{π}{6.4 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{1.08 \times 10^{4}}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{π}} \times 2.0}{6.4 \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{1.08 \times {\color{rgb(99,194,222)} \cancelto{10}{10^{4}}}}\)
\(\text{Simplify}\)
\(\dfrac{2.0}{6.4} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{1.08 \times 10.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{1.08 \times 10.0} = \dfrac{2.0}{6.4}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.08 \times 10.0}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{1.08 \times 10.0} \times \dfrac{1.08 \times 10.0}{1.0} = \dfrac{2.0}{6.4} \times \dfrac{1.08 \times 10.0}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{1.08}} \times {\color{rgb(166,218,227)} \cancel{10.0}}}{{\color{rgb(99,194,222)} \cancel{1.08}} \times {\color{rgb(166,218,227)} \cancel{10.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{2.0 \times 1.08 \times 10.0}{6.4 \times 1.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.0 \times 1.08 \times 10.0}{6.4}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 3.375\)
\(\text{Conversion Equation}\)
\(1.0\left(milliradian\right) = {\color{rgb(20,165,174)} 3.375}\left(minute \text{ } of \text{ } arc\right)\)