# Convert minim to sack

Learn how to convert 1 minim to sack step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(minim\right)={\color{rgb(20,165,174)} x}\left(sack\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(minim\right) = {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(sack\right) = {\color{rgb(125,164,120)} 1.0571721050064 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.0571721050064 \times 10^{-1}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(minim\right)={\color{rgb(20,165,174)} x}\left(sack\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0571721050064 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0571721050064 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0571721050064 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$6.1611519921875 \times 10^{-8} = {\color{rgb(20,165,174)} x} \times 1.0571721050064 \times 10^{-1}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$6.1611519921875 \times {\color{rgb(255,204,153)} \cancelto{10^{-7}}{10^{-8}}} = {\color{rgb(20,165,174)} x} \times 1.0571721050064 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}$$
$$\text{Simplify}$$
$$6.1611519921875 \times 10^{-7} = {\color{rgb(20,165,174)} x} \times 1.0571721050064$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.0571721050064 = 6.1611519921875 \times 10^{-7}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.0571721050064}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.0571721050064 \times \dfrac{1.0}{1.0571721050064} = 6.1611519921875 \times 10^{-7} \times \dfrac{1.0}{1.0571721050064}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.0571721050064}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.0571721050064}}} = 6.1611519921875 \times 10^{-7} \times \dfrac{1.0}{1.0571721050064}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{6.1611519921875 \times 10^{-7}}{1.0571721050064}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000005828\approx5.828 \times 10^{-7}$$
$$\text{Conversion Equation}$$
$$1.0\left(minim\right)\approx{\color{rgb(20,165,174)} 5.828 \times 10^{-7}}\left(sack\right)$$