Convert mite to bag
Learn how to convert
1
mite to
bag
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(mite\right)={\color{rgb(20,165,174)} x}\left(bag\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(mite\right) = {\color{rgb(89,182,91)} 5.0 \times 10^{-5}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 5.0 \times 10^{-5}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(bag\right) = {\color{rgb(125,164,120)} 42.63768278\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 42.63768278\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(mite\right)={\color{rgb(20,165,174)} x}\left(bag\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 42.63768278}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 42.63768278} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 42.63768278} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(5.0 \times 10^{-5} = {\color{rgb(20,165,174)} x} \times 42.63768278\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 42.63768278 = 5.0 \times 10^{-5}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{42.63768278}\right)\)
\({\color{rgb(20,165,174)} x} \times 42.63768278 \times \dfrac{1.0}{42.63768278} = 5.0 \times 10^{-5} \times \dfrac{1.0}{42.63768278}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{42.63768278}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{42.63768278}}} = 5.0 \times 10^{-5} \times \dfrac{1.0}{42.63768278}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{5.0 \times 10^{-5}}{42.63768278}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000011727\approx1.1727 \times 10^{-6}\)
\(\text{Conversion Equation}\)
\(1.0\left(mite\right)\approx{\color{rgb(20,165,174)} 1.1727 \times 10^{-6}}\left(bag\right)\)