# Convert mo(毛) to football field

Learn how to convert 1 mo(毛) to football field step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(mo(毛)\right)={\color{rgb(20,165,174)} x}\left(football \text{ } field\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(mo(毛)\right) = {\color{rgb(89,182,91)} \dfrac{1.0}{3.3 \times 10^{4}}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{1.0}{3.3 \times 10^{4}}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(football \text{ } field\right) = {\color{rgb(125,164,120)} 91.44\left(meter\right)} = {\color{rgb(125,164,120)} 91.44\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(mo(毛)\right)={\color{rgb(20,165,174)} x}\left(football \text{ } field\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{3.3 \times 10^{4}}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 91.44}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.0}{3.3 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 91.44} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{3.3 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 91.44} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.0}{3.3 \times 10^{4}} = {\color{rgb(20,165,174)} x} \times 91.44$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 91.44 = \dfrac{1.0}{3.3 \times 10^{4}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{91.44}\right)$$
$${\color{rgb(20,165,174)} x} \times 91.44 \times \dfrac{1.0}{91.44} = \dfrac{1.0}{3.3 \times 10^{4}} \times \dfrac{1.0}{91.44}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{91.44}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{91.44}}} = \dfrac{1.0 \times 1.0}{3.3 \times 10^{4} \times 91.44}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{3.3 \times 10^{4} \times 91.44}$$
Rewrite equation
$$\dfrac{1.0}{10^{4}}\text{ can be rewritten to }10^{-4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-4}}{3.3 \times 91.44}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000003314\approx3.314 \times 10^{-7}$$
$$\text{Conversion Equation}$$
$$1.0\left(mo(毛)\right)\approx{\color{rgb(20,165,174)} 3.314 \times 10^{-7}}\left(football \text{ } field\right)$$