# Convert mole / cubic inch to mole / cubic foot

Learn how to convert 1 mole / cubic inch to mole / cubic foot step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{mole}{cubic \text{ } inch}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{cubic \text{ } foot}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{mole}{cubic \text{ } meter}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{mole}{cubic \text{ } inch}\right) = {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}\left(\dfrac{mol}{m^{3}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{mole}{cubic \text{ } foot}\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{0.028316846592}\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{0.028316846592}\left(\dfrac{mol}{m^{3}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{mole}{cubic \text{ } inch}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{cubic \text{ } foot}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{0.028316846592}}} \times {\color{rgb(125,164,120)} \left(\dfrac{mole}{cubic \text{ } meter}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{mol}{m^{3}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{0.028316846592}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{mol}{m^{3}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{0.028316846592}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.0}{1.6387064 \times 10^{-5}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{0.028316846592}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{{\color{rgb(255,204,153)} \cancel{1.0}}}{1.6387064 \times 10^{-5}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}}}{0.028316846592}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{0.028316846592} = \dfrac{1.0}{1.6387064 \times 10^{-5}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{0.028316846592}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{0.028316846592} \times \dfrac{0.028316846592}{1.0} = \dfrac{1.0}{1.6387064 \times 10^{-5}} \times \dfrac{0.028316846592}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{0.028316846592}}}{{\color{rgb(99,194,222)} \cancel{0.028316846592}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 0.028316846592}{1.6387064 \times 10^{-5} \times {\color{rgb(255,204,153)} \cancel{1.0}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.028316846592}{1.6387064 \times 10^{-5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-5}}\text{ can be rewritten to }10^{5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{5} \times 0.028316846592}{1.6387064}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1728 = 1.728 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{mole}{cubic \text{ } inch}\right) = {\color{rgb(20,165,174)} 1.728 \times 10^{3}}\left(\dfrac{mole}{cubic \text{ } foot}\right)$$