Convert mole / cubic inch to mole / gallon
Learn how to convert
1
mole / cubic inch to
mole / gallon
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{mole}{cubic \text{ } inch}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{gallon}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{mole}{cubic \text{ } meter}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{mole}{cubic \text{ } inch}\right) = {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}\left(\dfrac{mol}{m^{3}}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{mole}{gallon}\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{4.54609 \times 10^{-3}}\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{4.54609 \times 10^{-3}}\left(\dfrac{mol}{m^{3}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{mole}{cubic \text{ } inch}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{gallon}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{4.54609 \times 10^{-3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{mole}{cubic \text{ } meter}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{mol}{m^{3}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{4.54609 \times 10^{-3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{mol}{m^{3}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{1.6387064 \times 10^{-5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{4.54609 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{1.0}{1.6387064 \times 10^{-5}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{4.54609 \times 10^{-3}}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{1.0}}}{1.6387064 \times {\color{rgb(99,194,222)} \cancelto{10^{-2}}{10^{-5}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}}}{4.54609 \times {\color{rgb(99,194,222)} \cancel{10^{-3}}}}\)
\(\text{Simplify}\)
\(\dfrac{1.0}{1.6387064 \times 10^{-2}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{4.54609}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{4.54609} = \dfrac{1.0}{1.6387064 \times 10^{-2}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{4.54609}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{4.54609} \times \dfrac{4.54609}{1.0} = \dfrac{1.0}{1.6387064 \times 10^{-2}} \times \dfrac{4.54609}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{4.54609}}}{{\color{rgb(99,194,222)} \cancel{4.54609}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 4.54609}{1.6387064 \times 10^{-2} \times {\color{rgb(255,204,153)} \cancel{1.0}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{4.54609}{1.6387064 \times 10^{-2}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-2}}\text{ can be rewritten to }10^{2}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{2} \times 4.54609}{1.6387064}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx277.41943279\approx2.7742 \times 10^{2}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{mole}{cubic \text{ } inch}\right)\approx{\color{rgb(20,165,174)} 2.7742 \times 10^{2}}\left(\dfrac{mole}{gallon}\right)\)