Convert myriagram to grain
Learn how to convert
1
myriagram to
grain
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(myriagram\right)={\color{rgb(20,165,174)} x}\left(grain\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(myriagram\right) = {\color{rgb(89,182,91)} 10.0\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 10.0\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(grain\right) = {\color{rgb(125,164,120)} 6.479891 \times 10^{-5}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 6.479891 \times 10^{-5}\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(myriagram\right)={\color{rgb(20,165,174)} x}\left(grain\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10.0} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 6.479891 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10.0} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 6.479891 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10.0} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 6.479891 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(10.0 = {\color{rgb(20,165,174)} x} \times 6.479891 \times 10^{-5}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 6.479891 \times 10^{-5} = 10.0\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{6.479891 \times 10^{-5}}\right)\)
\({\color{rgb(20,165,174)} x} \times 6.479891 \times 10^{-5} \times \dfrac{1.0}{6.479891 \times 10^{-5}} = 10.0 \times \dfrac{1.0}{6.479891 \times 10^{-5}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{6.479891}} \times {\color{rgb(99,194,222)} \cancel{10^{-5}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{6.479891}} \times {\color{rgb(99,194,222)} \cancel{10^{-5}}}} = 10.0 \times \dfrac{1.0}{6.479891 \times 10^{-5}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10.0}{6.479891 \times 10^{-5}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-5}}\text{ can be rewritten to }10^{5}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{5} \times 10.0}{6.479891}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10.0^{6}}{6.479891}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx154323.58353\approx1.5432 \times 10^{5}\)
\(\text{Conversion Equation}\)
\(1.0\left(myriagram\right)\approx{\color{rgb(20,165,174)} 1.5432 \times 10^{5}}\left(grain\right)\)