Convert nit to lambert
Learn how to convert
1
nit to
lambert
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(nit\right)={\color{rgb(20,165,174)} x}\left(lambert\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{candela}{square \text{ } meter}\right)\)
\(\text{Left side: 1.0 } \left(nit\right) = {\color{rgb(89,182,91)} 1.0\left(\dfrac{candela}{square \text{ } meter}\right)} = {\color{rgb(89,182,91)} 1.0\left(\dfrac{cd}{m^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(lambert\right) = {\color{rgb(125,164,120)} \dfrac{10^{4}}{3.14159265358979}\left(\dfrac{candela}{square \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{10^{4}}{3.14159265358979}\left(\dfrac{cd}{m^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(nit\right)={\color{rgb(20,165,174)} x}\left(lambert\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(\dfrac{candela}{square \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{10^{4}}{3.14159265358979}}} \times {\color{rgb(125,164,120)} \left(\dfrac{candela}{square \text{ } meter}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(\dfrac{cd}{m^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{10^{4}}{3.14159265358979}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{cd}{m^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{cd}{m^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{10^{4}}{3.14159265358979}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{cd}{m^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{10^{4}}{3.14159265358979}\)
\(\text{Simplify}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{10^{4}}{3.14159265358979}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{10^{4}}{3.14159265358979} = 1.0\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{3.14159265358979}{10^{4}}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{10^{4}}{3.14159265358979} \times \dfrac{3.14159265358979}{10^{4}} = 1.0 \times \dfrac{3.14159265358979}{10^{4}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{10^{4}}} \times {\color{rgb(99,194,222)} \cancel{3.14159265358979}}}{{\color{rgb(99,194,222)} \cancel{3.14159265358979}} \times {\color{rgb(255,204,153)} \cancel{10^{4}}}} = 1.0 \times \dfrac{3.14159265358979}{10^{4}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.14159265358979}{10^{4}}\)
Rewrite equation
\(\dfrac{1.0}{10^{4}}\text{ can be rewritten to }10^{-4}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = 10^{-4} \times 3.14159265358979\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0003141593\approx3.1416 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(nit\right)\approx{\color{rgb(20,165,174)} 3.1416 \times 10^{-4}}\left(lambert\right)\)