# Convert nox to phot

Learn how to convert 1 nox to phot step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(nox\right)={\color{rgb(20,165,174)} x}\left(phot\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(lux\right)$$
$$\text{Left side: 1.0 } \left(nox\right) = {\color{rgb(89,182,91)} 10^{-3}\left(lux\right)} = {\color{rgb(89,182,91)} 10^{-3}\left(lx\right)}$$
$$\text{Right side: 1.0 } \left(phot\right) = {\color{rgb(125,164,120)} 10^{4}\left(lux\right)} = {\color{rgb(125,164,120)} 10^{4}\left(lx\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(nox\right)={\color{rgb(20,165,174)} x}\left(phot\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \times {\color{rgb(89,182,91)} \left(lux\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{4}}} \times {\color{rgb(125,164,120)} \left(lux\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(lx\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{4}} \cdot {\color{rgb(125,164,120)} \left(lx\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(lx\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{4}} \times {\color{rgb(125,164,120)} \cancel{\left(lx\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-3} = {\color{rgb(20,165,174)} x} \times 10^{4}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{4} = 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{4}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{4} \times \dfrac{1.0}{10^{4}} = 10^{-3} \times \dfrac{1.0}{10^{4}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{4}}}} = 10^{-3} \times \dfrac{1.0}{10^{4}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{10^{4}}$$
Rewrite equation
$$\dfrac{1.0}{10^{4}}\text{ can be rewritten to }10^{-4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-4} \times 10^{-3}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 10^{-7}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{-7}$$
$$\text{Conversion Equation}$$
$$1.0\left(nox\right) = {\color{rgb(20,165,174)} 10^{-7}}\left(phot\right)$$