# Convert palm to goad

Learn how to convert 1 palm to goad step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(palm\right)={\color{rgb(20,165,174)} x}\left(goad\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(palm\right) = {\color{rgb(89,182,91)} 7.62 \times 10^{-2}\left(meter\right)} = {\color{rgb(89,182,91)} 7.62 \times 10^{-2}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(goad\right) = {\color{rgb(125,164,120)} 1.3716\left(meter\right)} = {\color{rgb(125,164,120)} 1.3716\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(palm\right)={\color{rgb(20,165,174)} x}\left(goad\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 7.62 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.3716}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 7.62 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.3716} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 7.62 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.3716} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$7.62 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 1.3716$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.3716 = 7.62 \times 10^{-2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.3716}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.3716 \times \dfrac{1.0}{1.3716} = 7.62 \times 10^{-2} \times \dfrac{1.0}{1.3716}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.3716}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.3716}}} = 7.62 \times 10^{-2} \times \dfrac{1.0}{1.3716}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{7.62 \times 10^{-2}}{1.3716}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0555555556\approx5.5556 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(palm\right)\approx{\color{rgb(20,165,174)} 5.5556 \times 10^{-2}}\left(goad\right)$$

# Other Conversion Examples

### Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.