# Convert pint to dram

Learn how to convert 1 pint to dram step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(pint\right)={\color{rgb(20,165,174)} x}\left(dram\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(pint\right) = {\color{rgb(89,182,91)} 5.506104713575 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 5.506104713575 \times 10^{-4}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(dram\right) = {\color{rgb(125,164,120)} 3.5516328125 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.5516328125 \times 10^{-6}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(pint\right)={\color{rgb(20,165,174)} x}\left(dram\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 5.506104713575 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.5516328125 \times 10^{-6}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 5.506104713575 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.5516328125 \times 10^{-6}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 5.506104713575 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.5516328125 \times 10^{-6}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$5.506104713575 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 3.5516328125 \times 10^{-6}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$5.506104713575 \times {\color{rgb(255,204,153)} \cancel{10^{-4}}} = {\color{rgb(20,165,174)} x} \times 3.5516328125 \times {\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-6}}}$$
$$\text{Simplify}$$
$$5.506104713575 = {\color{rgb(20,165,174)} x} \times 3.5516328125 \times 10^{-2}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.5516328125 \times 10^{-2} = 5.506104713575$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.5516328125 \times 10^{-2}}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.5516328125 \times 10^{-2} \times \dfrac{1.0}{3.5516328125 \times 10^{-2}} = 5.506104713575 \times \dfrac{1.0}{3.5516328125 \times 10^{-2}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.5516328125}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.5516328125}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = 5.506104713575 \times \dfrac{1.0}{3.5516328125 \times 10^{-2}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{5.506104713575}{3.5516328125 \times 10^{-2}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-2}}\text{ can be rewritten to }10^{2}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{2} \times 5.506104713575}{3.5516328125}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx155.03023551\approx1.5503 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(pint\right)\approx{\color{rgb(20,165,174)} 1.5503 \times 10^{2}}\left(dram\right)$$