Convert point to barge
Learn how to convert
1
point to
barge
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(point\right)={\color{rgb(20,165,174)} x}\left(barge\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(point\right) = {\color{rgb(89,182,91)} 2.0 \times 10^{-6}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 2.0 \times 10^{-6}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(barge\right) = {\color{rgb(125,164,120)} 20411.65665\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 20411.65665\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(point\right)={\color{rgb(20,165,174)} x}\left(barge\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.0 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 20411.65665}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.0 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 20411.65665} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.0 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 20411.65665} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(2.0 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 20411.65665\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 20411.65665 = 2.0 \times 10^{-6}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{20411.65665}\right)\)
\({\color{rgb(20,165,174)} x} \times 20411.65665 \times \dfrac{1.0}{20411.65665} = 2.0 \times 10^{-6} \times \dfrac{1.0}{20411.65665}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{20411.65665}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{20411.65665}}} = 2.0 \times 10^{-6} \times \dfrac{1.0}{20411.65665}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.0 \times 10^{-6}}{20411.65665}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx9.7983227638 \times 10^{-11}\approx9.7983 \times 10^{-11}\)
\(\text{Conversion Equation}\)
\(1.0\left(point\right)\approx{\color{rgb(20,165,174)} 9.7983 \times 10^{-11}}\left(barge\right)\)