Convert point to fall

Learn how to convert 1 point to fall step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(point\right)={\color{rgb(20,165,174)} x}\left(fall\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(point\right) = {\color{rgb(89,182,91)} 2.54 \times 10^{-5}\left(meter\right)} = {\color{rgb(89,182,91)} 2.54 \times 10^{-5}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(fall\right) = {\color{rgb(125,164,120)} 5.67\left(meter\right)} = {\color{rgb(125,164,120)} 5.67\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(point\right)={\color{rgb(20,165,174)} x}\left(fall\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.54 \times 10^{-5}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 5.67}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.54 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 5.67} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.54 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 5.67} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(2.54 \times 10^{-5} = {\color{rgb(20,165,174)} x} \times 5.67\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 5.67 = 2.54 \times 10^{-5}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{5.67}\right)\)
\({\color{rgb(20,165,174)} x} \times 5.67 \times \dfrac{1.0}{5.67} = 2.54 \times 10^{-5} \times \dfrac{1.0}{5.67}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{5.67}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{5.67}}} = 2.54 \times 10^{-5} \times \dfrac{1.0}{5.67}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.54 \times 10^{-5}}{5.67}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000044797\approx4.4797 \times 10^{-6}\)
\(\text{Conversion Equation}\)
\(1.0\left(point\right)\approx{\color{rgb(20,165,174)} 4.4797 \times 10^{-6}}\left(fall\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.