# Convert pound / bushel to tonne / cubic mile

Learn how to convert 1 pound / bushel to tonne / cubic mile step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{pound}{bushel}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{tonne}{cubic \text{ } mile}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{pound}{bushel}\right) = {\color{rgb(89,182,91)} \dfrac{45.359237}{3.636872}\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(89,182,91)} \dfrac{45.359237}{3.636872}\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{tonne}{cubic \text{ } mile}\right) = {\color{rgb(125,164,120)} \dfrac{1016.0469088}{4168181825.44058}\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{1016.0469088}{4168181825.44058}\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{pound}{bushel}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{tonne}{cubic \text{ } mile}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{45.359237}{3.636872}} \times {\color{rgb(89,182,91)} \left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1016.0469088}{4168181825.44058}}} \times {\color{rgb(125,164,120)} \left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{45.359237}{3.636872}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1016.0469088}{4168181825.44058}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{45.359237}{3.636872}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1016.0469088}{4168181825.44058}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{45.359237}{3.636872} = {\color{rgb(20,165,174)} x} \times \dfrac{1016.0469088}{4168181825.44058}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1016.0469088}{4168181825.44058} = \dfrac{45.359237}{3.636872}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{4168181825.44058}{1016.0469088}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1016.0469088}{4168181825.44058} \times \dfrac{4168181825.44058}{1016.0469088} = \dfrac{45.359237}{3.636872} \times \dfrac{4168181825.44058}{1016.0469088}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1016.0469088}} \times {\color{rgb(99,194,222)} \cancel{4168181825.44058}}}{{\color{rgb(99,194,222)} \cancel{4168181825.44058}} \times {\color{rgb(255,204,153)} \cancel{1016.0469088}}} = \dfrac{45.359237 \times 4168181825.44058}{3.636872 \times 1016.0469088}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{45.359237 \times 4168181825.44058}{3.636872 \times 1016.0469088}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx51164722.261\approx5.1165 \times 10^{7}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{pound}{bushel}\right)\approx{\color{rgb(20,165,174)} 5.1165 \times 10^{7}}\left(\dfrac{tonne}{cubic \text{ } mile}\right)$$