Convert pound to last
Learn how to convert
1
pound to
last
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(pound\right)={\color{rgb(20,165,174)} x}\left(last\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(pound\right) = {\color{rgb(89,182,91)} 0.5\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 0.5\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(last\right) = {\color{rgb(125,164,120)} 1981.29147216\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 1981.29147216\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(pound\right)={\color{rgb(20,165,174)} x}\left(last\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 0.5} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1981.29147216}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 0.5} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1981.29147216} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 0.5} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1981.29147216} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(0.5 = {\color{rgb(20,165,174)} x} \times 1981.29147216\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1981.29147216 = 0.5\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1981.29147216}\right)\)
\({\color{rgb(20,165,174)} x} \times 1981.29147216 \times \dfrac{1.0}{1981.29147216} = 0.5 \times \dfrac{1.0}{1981.29147216}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1981.29147216}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1981.29147216}}} = 0.5 \times \dfrac{1.0}{1981.29147216}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{0.5}{1981.29147216}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0002523606\approx2.5236 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(pound\right)\approx{\color{rgb(20,165,174)} 2.5236 \times 10^{-4}}\left(last\right)\)