# Convert poundal • foot to newton • meter

Learn how to convert 1 poundal • foot to newton • meter step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(poundal \times foot\right)={\color{rgb(20,165,174)} x}\left(newton \times meter\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton \times meter\right)$$
$$\text{Left side: 1.0 } \left(poundal \times foot\right) = {\color{rgb(89,182,91)} 4.21401100938048 \times 10^{-2}\left(newton \times meter\right)} = {\color{rgb(89,182,91)} 4.21401100938048 \times 10^{-2}\left(N \cdot m\right)}$$
$$\text{Right side: 1.0 } \left(newton \times meter\right) = {\color{rgb(125,164,120)} 1.0\left(newton \times meter\right)} = {\color{rgb(125,164,120)} 1.0\left(N \cdot m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(poundal \times foot\right)={\color{rgb(20,165,174)} x}\left(newton \times meter\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 4.21401100938048 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(newton \times meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(newton \times meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 4.21401100938048 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(N \cdot m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(N \cdot m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 4.21401100938048 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N \cdot m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(N \cdot m\right)}}$$
$$\text{Conversion Equation}$$
$$4.21401100938048 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$4.21401100938048 \times 10^{-2} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 4.21401100938048 \times 10^{-2}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0421401101\approx4.214 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(poundal \times foot\right)\approx{\color{rgb(20,165,174)} 4.214 \times 10^{-2}}\left(newton \times meter\right)$$