Convert quarter to dash
Learn how to convert
1
quarter to
dash
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(quarter\right)={\color{rgb(20,165,174)} x}\left(dash\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(quarter\right) = {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(dash\right) = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(quarter\right)={\color{rgb(20,165,174)} x}\left(dash\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(2.9094976 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-7}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(2.9094976 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times {\color{rgb(255,204,153)} \cancelto{10^{-6}}{10^{-7}}}\)
\(\text{Simplify}\)
\(2.9094976 = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6} = 2.9094976\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{3.08057599609375 \times 10^{-6}}\right)\)
\({\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6} \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}} = 2.9094976 \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.08057599609375}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.08057599609375}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}}} = 2.9094976 \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.9094976}{3.08057599609375 \times 10^{-6}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{6} \times 2.9094976}{3.08057599609375}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx944465.45181\approx9.4447 \times 10^{5}\)
\(\text{Conversion Equation}\)
\(1.0\left(quarter\right)\approx{\color{rgb(20,165,174)} 9.4447 \times 10^{5}}\left(dash\right)\)