Convert quintal to liang(市兩)

Learn how to convert 1 quintal to liang(市兩) step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(quintal\right)={\color{rgb(20,165,174)} x}\left(liang(市兩)\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(quintal\right) = {\color{rgb(89,182,91)} 10^{2}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 10^{2}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(liang(市兩)\right) = {\color{rgb(125,164,120)} 5.0 \times 10^{-2}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 5.0 \times 10^{-2}\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(quintal\right)={\color{rgb(20,165,174)} x}\left(liang(市兩)\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{2}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 5.0 \times 10^{-2}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{2}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 5.0 \times 10^{-2}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{2}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 5.0 \times 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(10^{2} = {\color{rgb(20,165,174)} x} \times 5.0 \times 10^{-2}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 5.0 \times 10^{-2} = 10^{2}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{5.0 \times 10^{-2}}\right)\)
\({\color{rgb(20,165,174)} x} \times 5.0 \times 10^{-2} \times \dfrac{1.0}{5.0 \times 10^{-2}} = 10^{2} \times \dfrac{1.0}{5.0 \times 10^{-2}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{5.0}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{5.0}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = 10^{2} \times \dfrac{1.0}{5.0 \times 10^{-2}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{2}}{5.0 \times 10^{-2}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-2}}\text{ can be rewritten to }10^{2}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{2} \times 10^{2}}{5.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{4}}{5.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 2000 = 2 \times 10^{3}\)
\(\text{Conversion Equation}\)
\(1.0\left(quintal\right) = {\color{rgb(20,165,174)} 2 \times 10^{3}}\left(liang(市兩)\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.