Convert revolution / minute to degree / hour
Learn how to convert
1
revolution / minute to
degree / hour
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{revolution}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{degree}{hour}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{radian}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{revolution}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{π}{30.0}\left(\dfrac{radian}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{π}{30.0}\left(\dfrac{rad}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{degree}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{π}{6.48 \times 10^{5}}\left(\dfrac{radian}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{π}{6.48 \times 10^{5}}\left(\dfrac{rad}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{revolution}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{degree}{hour}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{radian}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{6.48 \times 10^{5}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{radian}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{rad}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{6.48 \times 10^{5}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{rad}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{rad}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{6.48 \times 10^{5}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{rad}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{π}{30.0} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{6.48 \times 10^{5}}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{30.0} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{6.48 \times 10^{5}}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{6.48 \times 10^{5}} = \dfrac{1.0}{30.0}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{6.48 \times 10^{5}}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{6.48 \times 10^{5}} \times \dfrac{6.48 \times 10^{5}}{1.0} = \dfrac{1.0}{30.0} \times \dfrac{6.48 \times 10^{5}}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{6.48}} \times {\color{rgb(166,218,227)} \cancel{10^{5}}}}{{\color{rgb(99,194,222)} \cancel{6.48}} \times {\color{rgb(166,218,227)} \cancel{10^{5}}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 6.48 \times 10^{5}}{30.0 \times {\color{rgb(255,204,153)} \cancel{1.0}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{6.48 \times 10^{5}}{30.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 21600 = 2.16 \times 10^{4}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{revolution}{minute}\right) = {\color{rgb(20,165,174)} 2.16 \times 10^{4}}\left(\dfrac{degree}{hour}\right)\)