Convert revolution / minute to radian / second
Learn how to convert
1
revolution / minute to
radian / second
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{revolution}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{radian}{second}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{radian}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{revolution}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{π}{30.0}\left(\dfrac{radian}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{π}{30.0}\left(\dfrac{rad}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{radian}{second}\right) = {\color{rgb(125,164,120)} 1.0\left(\dfrac{radian}{second}\right)} = {\color{rgb(125,164,120)} 1.0\left(\dfrac{rad}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{revolution}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{radian}{second}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{radian}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(\dfrac{radian}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{rad}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(\dfrac{rad}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{30.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{rad}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{rad}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{π}{30.0} = {\color{rgb(20,165,174)} x} \times 1.0\)
\(\text{Simplify}\)
\(\dfrac{π}{30.0} = {\color{rgb(20,165,174)} x}\)
Switch sides
\({\color{rgb(20,165,174)} x} = \dfrac{π}{30.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.1047197551\approx1.0472 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{revolution}{minute}\right)\approx{\color{rgb(20,165,174)} 1.0472 \times 10^{-1}}\left(\dfrac{radian}{second}\right)\)