# Convert sack to kilogram

Learn how to convert 1 sack to kilogram step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sack\right)={\color{rgb(20,165,174)} x}\left({\color{rgb(230,179,255)} kilo}gram\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(sack\right) = {\color{rgb(89,182,91)} 39.689332375\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 39.689332375\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(gram\right) = {\color{rgb(125,164,120)} 10^{-3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 10^{-3}\left({\color{rgb(230,179,255)} k}g\right)}$$
Define the values of the selected prefixes
$$\text{Right side: } kilo = k = {\color{rgb(204,139,6)} 10^{3}}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sack\right)={\color{rgb(20,165,174)} x}\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 39.689332375} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(204,139,6)} 10^{3}} \times {\color{rgb(125,164,120)} 10^{-3}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 39.689332375} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(204,139,6)} 10^{3}} \times {\color{rgb(125,164,120)} 10^{-3}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 39.689332375} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(204,139,6)} 10^{3}} \times {\color{rgb(125,164,120)} 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$39.689332375 = {\color{rgb(20,165,174)} x} \times 10^{3} \times 10^{-3}$$
$$\text{Simplify}$$
$$39.689332375 = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 39.689332375$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 39.689332375\approx39.6893$$
$$\text{Conversion Equation}$$
$$1.0\left(sack\right)\approx{\color{rgb(20,165,174)} 39.6893}\left({\color{rgb(230,179,255)} kilo}gram\right)$$