Convert second of arc to right angle
Learn how to convert
1
second of arc to
right angle
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(second \text{ } of \text{ } arc\right)={\color{rgb(20,165,174)} x}\left(right \text{ } angle\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(radian\right)\)
\(\text{Left side: 1.0 } \left(second \text{ } of \text{ } arc\right) = {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}\left(radian\right)} = {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}\left(rad\right)}\)
\(\text{Right side: 1.0 } \left(right \text{ } angle\right) = {\color{rgb(125,164,120)} \dfrac{π}{2.0}\left(radian\right)} = {\color{rgb(125,164,120)} \dfrac{π}{2.0}\left(rad\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(second \text{ } of \text{ } arc\right)={\color{rgb(20,165,174)} x}\left(right \text{ } angle\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{2.0}}} \times {\color{rgb(125,164,120)} \left(radian\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{2.0}} \cdot {\color{rgb(125,164,120)} \left(rad\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{2.0}} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{π}{6.48 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{2.0}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{6.48 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{2.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.0} = \dfrac{1.0}{6.48 \times 10^{5}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{2.0}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.0} \times \dfrac{2.0}{1.0} = \dfrac{1.0}{6.48 \times 10^{5}} \times \dfrac{2.0}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{2.0}}}{{\color{rgb(99,194,222)} \cancel{2.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 2.0}{6.48 \times 10^{5} \times {\color{rgb(255,204,153)} \cancel{1.0}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.0}{6.48 \times 10^{5}}\)
Rewrite equation
\(\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 2.0}{6.48}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000030864\approx3.0864 \times 10^{-6}\)
\(\text{Conversion Equation}\)
\(1.0\left(second \text{ } of \text{ } arc\right)\approx{\color{rgb(20,165,174)} 3.0864 \times 10^{-6}}\left(right \text{ } angle\right)\)