# Convert shao(勺) to minim

Learn how to convert 1 shao(勺) to minim step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(shao(勺)\right)={\color{rgb(20,165,174)} x}\left(minim\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(shao(勺)\right) = {\color{rgb(89,182,91)} 10^{-5}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{-5}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(minim\right) = {\color{rgb(125,164,120)} 5.91938802083333 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 5.91938802083333 \times 10^{-8}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(shao(勺)\right)={\color{rgb(20,165,174)} x}\left(minim\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-5}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 5.91938802083333 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-5}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 5.91938802083333 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 5.91938802083333 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-5} = {\color{rgb(20,165,174)} x} \times 5.91938802083333 \times 10^{-8}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{-5}}} = {\color{rgb(20,165,174)} x} \times 5.91938802083333 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-8}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 5.91938802083333 \times 10^{-3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 5.91938802083333 \times 10^{-3} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{5.91938802083333 \times 10^{-3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 5.91938802083333 \times 10^{-3} \times \dfrac{1.0}{5.91938802083333 \times 10^{-3}} = \times \dfrac{1.0}{5.91938802083333 \times 10^{-3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{5.91938802083333}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{5.91938802083333}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}}} = \dfrac{1.0}{5.91938802083333 \times 10^{-3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{5.91938802083333 \times 10^{-3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-3}}\text{ can be rewritten to }10^{3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{3}}{5.91938802083333}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx168.93638269\approx1.6894 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(shao(勺)\right)\approx{\color{rgb(20,165,174)} 1.6894 \times 10^{2}}\left(minim\right)$$