# Convert square meter to football field

Learn how to convert 1 square meter to football field step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(square \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(football \text{ } field\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(square \text{ } meter\right) = {\color{rgb(89,182,91)} 1.0\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.0\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(football \text{ } field\right) = {\color{rgb(125,164,120)} 7.14 \times 10^{3}\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 7.14 \times 10^{3}\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(square \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(football \text{ } field\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 7.14 \times 10^{3}}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 7.14 \times 10^{3}} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 7.14 \times 10^{3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 7.14 \times 10^{3}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 7.14 \times 10^{3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 7.14 \times 10^{3} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{7.14 \times 10^{3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 7.14 \times 10^{3} \times \dfrac{1.0}{7.14 \times 10^{3}} = 1.0 \times \dfrac{1.0}{7.14 \times 10^{3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{7.14}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{7.14}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = 1.0 \times \dfrac{1.0}{7.14 \times 10^{3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{7.14 \times 10^{3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{7.14}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.000140056\approx1.4006 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(square \text{ } meter\right)\approx{\color{rgb(20,165,174)} 1.4006 \times 10^{-4}}\left(football \text{ } field\right)$$