Convert teaspoon to shot
Learn how to convert
1
teaspoon to
shot
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(teaspoon\right)={\color{rgb(20,165,174)} x}\left(shot\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(teaspoon\right) = {\color{rgb(89,182,91)} 5.91938802083333 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 5.91938802083333 \times 10^{-6}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(shot\right) = {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(teaspoon\right)={\color{rgb(20,165,174)} x}\left(shot\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 5.91938802083333 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 5.91938802083333 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 5.91938802083333 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(5.91938802083333 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 2.95735295625 \times 10^{-5}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(5.91938802083333 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-6}}} = {\color{rgb(20,165,174)} x} \times 2.95735295625 \times {\color{rgb(255,204,153)} \cancel{10^{-5}}}\)
\(\text{Simplify}\)
\(5.91938802083333 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 2.95735295625\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 2.95735295625 = 5.91938802083333 \times 10^{-1}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{2.95735295625}\right)\)
\({\color{rgb(20,165,174)} x} \times 2.95735295625 \times \dfrac{1.0}{2.95735295625} = 5.91938802083333 \times 10^{-1} \times \dfrac{1.0}{2.95735295625}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.95735295625}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.95735295625}}} = 5.91938802083333 \times 10^{-1} \times \dfrac{1.0}{2.95735295625}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{5.91938802083333 \times 10^{-1}}{2.95735295625}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.2001583209\approx2.0016 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(teaspoon\right)\approx{\color{rgb(20,165,174)} 2.0016 \times 10^{-1}}\left(shot\right)\)