Convert tenth meter to ligne
Learn how to convert
1
tenth meter to
ligne
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(tenth \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(ligne\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(tenth \text{ } meter\right) = {\color{rgb(89,182,91)} 10^{-10}\left(meter\right)} = {\color{rgb(89,182,91)} 10^{-10}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(ligne\right) = {\color{rgb(125,164,120)} \dfrac{0.2233275}{99.0}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{0.2233275}{99.0}\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(tenth \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(ligne\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-10}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{0.2233275}{99.0}}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-10}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{0.2233275}{99.0}} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-10}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{0.2233275}{99.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-10} = {\color{rgb(20,165,174)} x} \times \dfrac{0.2233275}{99.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{0.2233275}{99.0} = 10^{-10}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{99.0}{0.2233275}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{0.2233275}{99.0} \times \dfrac{99.0}{0.2233275} = 10^{-10} \times \dfrac{99.0}{0.2233275}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{0.2233275}} \times {\color{rgb(99,194,222)} \cancel{99.0}}}{{\color{rgb(99,194,222)} \cancel{99.0}} \times {\color{rgb(255,204,153)} \cancel{0.2233275}}} = 10^{-10} \times \dfrac{99.0}{0.2233275}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-10} \times 99.0}{0.2233275}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000000443\approx4.433 \times 10^{-8}\)
\(\text{Conversion Equation}\)
\(1.0\left(tenth \text{ } meter\right)\approx{\color{rgb(20,165,174)} 4.433 \times 10^{-8}}\left(ligne\right)\)