Convert to(升) to kilderkin
Learn how to convert
1
to(升) to
kilderkin
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(to(升)\right)={\color{rgb(20,165,174)} x}\left(kilderkin\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(to(升)\right) = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{2}}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{2}}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(kilderkin\right) = {\color{rgb(125,164,120)} 8.182962 \times 10^{-2}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 8.182962 \times 10^{-2}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(to(升)\right)={\color{rgb(20,165,174)} x}\left(kilderkin\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{2}}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 8.182962 \times 10^{-2}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{2}}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 8.182962 \times 10^{-2}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{2}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 8.182962 \times 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{2.401}{1.331 \times 10^{2}} = {\color{rgb(20,165,174)} x} \times 8.182962 \times 10^{-2}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 8.182962 \times 10^{-2} = \dfrac{2.401}{1.331 \times 10^{2}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{8.182962 \times 10^{-2}}\right)\)
\({\color{rgb(20,165,174)} x} \times 8.182962 \times 10^{-2} \times \dfrac{1.0}{8.182962 \times 10^{-2}} = \dfrac{2.401}{1.331 \times 10^{2}} \times \dfrac{1.0}{8.182962 \times 10^{-2}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{8.182962}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{8.182962}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = \dfrac{2.401 \times 1.0}{1.331 \times {\color{rgb(255,204,153)} \cancel{10^{2}}} \times 8.182962 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.401}{1.331 \times 8.182962}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.2204466838\approx2.2045 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(to(升)\right)\approx{\color{rgb(20,165,174)} 2.2045 \times 10^{-1}}\left(kilderkin\right)\)