Convert tun to go(合)
Learn how to convert
1
tun to
go(合)
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(tun\right)={\color{rgb(20,165,174)} x}\left(go(合)\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(tun\right) = {\color{rgb(89,182,91)} 9.53923769568 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 9.53923769568 \times 10^{-1}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(go(合)\right) = {\color{rgb(125,164,120)} \dfrac{2401.0}{1.331 \times 10^{7}}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} \dfrac{2401.0}{1.331 \times 10^{7}}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(tun\right)={\color{rgb(20,165,174)} x}\left(go(合)\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 9.53923769568 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2401.0}{1.331 \times 10^{7}}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 9.53923769568 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2401.0}{1.331 \times 10^{7}}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 9.53923769568 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2401.0}{1.331 \times 10^{7}}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(9.53923769568 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times \dfrac{2401.0}{1.331 \times 10^{7}}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{2401.0}{1.331 \times 10^{7}} = 9.53923769568 \times 10^{-1}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.331 \times 10^{7}}{2401.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{2401.0}{1.331 \times 10^{7}} \times \dfrac{1.331 \times 10^{7}}{2401.0} = 9.53923769568 \times 10^{-1} \times \dfrac{1.331 \times 10^{7}}{2401.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2401.0}} \times {\color{rgb(99,194,222)} \cancel{1.331}} \times {\color{rgb(166,218,227)} \cancel{10^{7}}}}{{\color{rgb(99,194,222)} \cancel{1.331}} \times {\color{rgb(166,218,227)} \cancel{10^{7}}} \times {\color{rgb(255,204,153)} \cancel{2401.0}}} = 9.53923769568 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} \times \dfrac{1.331 \times {\color{rgb(255,204,153)} \cancelto{10^{6}}{10^{7}}}}{2401.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{9.53923769568 \times 1.331 \times 10^{6}}{2401.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx5288.0988642\approx5.2881 \times 10^{3}\)
\(\text{Conversion Equation}\)
\(1.0\left(tun\right)\approx{\color{rgb(20,165,174)} 5.2881 \times 10^{3}}\left(go(合)\right)\)