# Convert ampere / volt to absiemens

Learn how to convert 1 ampere / volt to absiemens step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{ampere}{volt}\right)={\color{rgb(20,165,174)} x}\left(absiemens\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(siemens\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{ampere}{volt}\right) = {\color{rgb(89,182,91)} 1.0\left(siemens\right)} = {\color{rgb(89,182,91)} 1.0\left(S\right)}$$
$$\text{Right side: 1.0 } \left(absiemens\right) = {\color{rgb(125,164,120)} 10^{9}\left(siemens\right)} = {\color{rgb(125,164,120)} 10^{9}\left(S\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{ampere}{volt}\right)={\color{rgb(20,165,174)} x}\left(absiemens\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(siemens\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{9}}} \times {\color{rgb(125,164,120)} \left(siemens\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(S\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{9}} \cdot {\color{rgb(125,164,120)} \left(S\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(S\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{9}} \times {\color{rgb(125,164,120)} \cancel{\left(S\right)}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{9}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{9}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{9} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{9}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{9} \times \dfrac{1.0}{10^{9}} = 1.0 \times \dfrac{1.0}{10^{9}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{9}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{9}}}} = 1.0 \times \dfrac{1.0}{10^{9}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{9}}$$
Rewrite equation
$$\dfrac{1.0}{10^{9}}\text{ can be rewritten to }10^{-9}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-9}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{-9}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{ampere}{volt}\right) = {\color{rgb(20,165,174)} 10^{-9}}\left(absiemens\right)$$