Convert mho to absiemens
Learn how to convert
1
mho to
absiemens
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(mho\right)={\color{rgb(20,165,174)} x}\left(absiemens\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(siemens\right)\)
\(\text{Left side: 1.0 } \left(mho\right) = {\color{rgb(89,182,91)} 1.0\left(siemens\right)} = {\color{rgb(89,182,91)} 1.0\left(S\right)}\)
\(\text{Right side: 1.0 } \left(absiemens\right) = {\color{rgb(125,164,120)} 10^{9}\left(siemens\right)} = {\color{rgb(125,164,120)} 10^{9}\left(S\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(mho\right)={\color{rgb(20,165,174)} x}\left(absiemens\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(siemens\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{9}}} \times {\color{rgb(125,164,120)} \left(siemens\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(S\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{9}} \cdot {\color{rgb(125,164,120)} \left(S\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(S\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{9}} \times {\color{rgb(125,164,120)} \cancel{\left(S\right)}}\)
\(\text{Conversion Equation}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times 10^{9}\)
\(\text{Simplify}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times 10^{9}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 10^{9} = 1.0\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{10^{9}}\right)\)
\({\color{rgb(20,165,174)} x} \times 10^{9} \times \dfrac{1.0}{10^{9}} = 1.0 \times \dfrac{1.0}{10^{9}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{9}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{9}}}} = 1.0 \times \dfrac{1.0}{10^{9}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{9}}\)
Rewrite equation
\(\dfrac{1.0}{10^{9}}\text{ can be rewritten to }10^{-9}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = 10^{-9}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 10^{-9}\)
\(\text{Conversion Equation}\)
\(1.0\left(mho\right) = {\color{rgb(20,165,174)} 10^{-9}}\left(absiemens\right)\)