# Convert deca to femto

Learn how to convert 1 deca to femto step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(deca\right)={\color{rgb(20,165,174)} x}\left(femto\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } deca \text{ } is \text{ } 10.0$$
$$The \text{ } value \text{ } of \text{ } femto \text{ } is \text{ } 10^{-15}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(deca\right)={\color{rgb(20,165,174)} x}\left(femto\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10.0} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-15}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10.0} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-15}}$$
$$\text{Conversion Equation}$$
$$10.0 = {\color{rgb(20,165,174)} x} \times 10^{-15}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-15} = 10.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-15}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-15} \times \dfrac{1.0}{10^{-15}} = 10.0 \times \dfrac{1.0}{10^{-15}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-15}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-15}}}} = 10.0 \times \dfrac{1.0}{10^{-15}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0}{10^{-15}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-15}}\text{ can be rewritten to }10^{15}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{15} \times 10.0$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 10.0^{16}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10000000000000000$$
$$\text{Conversion Equation}$$
$$1.0\left(deca\right) = {\color{rgb(20,165,174)} 10000000000000000}\left(femto\right)$$