# Convert one to atto

Learn how to convert 1 one to atto step by step.

## Calculation Breakdown

Set up the equation
$$1.0={\color{rgb(20,165,174)} x}\left(atto\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } atto \text{ } is \text{ } 10^{-18}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0={\color{rgb(20,165,174)} x}\left(atto\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-18}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-18}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{-18}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{-18}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-18} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-18}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-18} \times \dfrac{1.0}{10^{-18}} = 1.0 \times \dfrac{1.0}{10^{-18}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-18}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-18}}}} = 1.0 \times \dfrac{1.0}{10^{-18}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{-18}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-18}}\text{ can be rewritten to }10^{18}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{18}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{18}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} 10^{18}}\left(atto\right)$$