Convert exa to deci
Learn how to convert
1
exa to
deci
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(exa\right)={\color{rgb(20,165,174)} x}\left(deci\right)\)
Define the prefix value(s)
\(The \text{ } value \text{ } of \text{ } exa \text{ } is \text{ } 10^{18}\)
\(The \text{ } value \text{ } of \text{ } deci \text{ } is \text{ } 10^{-1}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(exa\right)={\color{rgb(20,165,174)} x}\left(deci\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{18}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-1}}}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{18}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-1}}\)
\(\text{Conversion Equation}\)
\(10^{18} = {\color{rgb(20,165,174)} x} \times 10^{-1}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 10^{-1} = 10^{18}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{10^{-1}}\right)\)
\({\color{rgb(20,165,174)} x} \times 10^{-1} \times \dfrac{1.0}{10^{-1}} = 10^{18} \times \dfrac{1.0}{10^{-1}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-1}}}} = 10^{18} \times \dfrac{1.0}{10^{-1}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{18}}{10^{-1}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = 10.0 \times 10^{18}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = 10^{19}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 10^{19}\)
\(\text{Conversion Equation}\)
\(1.0\left(exa\right) = {\color{rgb(20,165,174)} 10^{19}}\left(deci\right)\)