Convert mega to femto
Learn how to convert
1
mega to
femto
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(mega\right)={\color{rgb(20,165,174)} x}\left(femto\right)\)
Define the prefix value(s)
\(The \text{ } value \text{ } of \text{ } mega \text{ } is \text{ } 10^{6}\)
\(The \text{ } value \text{ } of \text{ } femto \text{ } is \text{ } 10^{-15}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(mega\right)={\color{rgb(20,165,174)} x}\left(femto\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{6}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-15}}}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{6}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-15}}\)
\(\text{Conversion Equation}\)
\(10^{6} = {\color{rgb(20,165,174)} x} \times 10^{-15}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 10^{-15} = 10^{6}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{10^{-15}}\right)\)
\({\color{rgb(20,165,174)} x} \times 10^{-15} \times \dfrac{1.0}{10^{-15}} = 10^{6} \times \dfrac{1.0}{10^{-15}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-15}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-15}}}} = 10^{6} \times \dfrac{1.0}{10^{-15}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{6}}{10^{-15}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-15}}\text{ can be rewritten to }10^{15}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = 10^{15} \times 10^{6}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = 10^{21}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 10^{21}\)
\(\text{Conversion Equation}\)
\(1.0\left(mega\right) = {\color{rgb(20,165,174)} 10^{21}}\left(femto\right)\)