# Convert mole / cubic meter to mole / cup

Learn how to convert 1 mole / cubic meter to mole / cup step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{mole}{cubic \text{ } meter}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{cup}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{mole}{cubic \text{ } meter}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{mole}{cubic \text{ } meter}\right) = {\color{rgb(89,182,91)} 1.0\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(89,182,91)} 1.0\left(\dfrac{mol}{m^{3}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{mole}{cup}\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{2.365882365 \times 10^{-4}}\left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{2.365882365 \times 10^{-4}}\left(\dfrac{mol}{m^{3}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{mole}{cubic \text{ } meter}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mole}{cup}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(\dfrac{mole}{cubic \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{2.365882365 \times 10^{-4}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{mole}{cubic \text{ } meter}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(\dfrac{mol}{m^{3}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{2.365882365 \times 10^{-4}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{mol}{m^{3}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{2.365882365 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{mol}{m^{3}}\right)}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.365882365 \times 10^{-4}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.365882365 \times 10^{-4}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{1.0}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}}}{2.365882365 \times 10^{-4}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.365882365 \times 10^{-4}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.365882365 \times 10^{-4}} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{2.365882365 \times 10^{-4}}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2.365882365 \times 10^{-4}} \times \dfrac{2.365882365 \times 10^{-4}}{1.0} = \times \dfrac{2.365882365 \times 10^{-4}}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{2.365882365}} \times {\color{rgb(166,218,227)} \cancel{10^{-4}}}}{{\color{rgb(99,194,222)} \cancel{2.365882365}} \times {\color{rgb(166,218,227)} \cancel{10^{-4}}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{2.365882365 \times 10^{-4}}{1.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 2.365882365 \times 10^{-4}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0002365882\approx2.3659 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{mole}{cubic \text{ } meter}\right)\approx{\color{rgb(20,165,174)} 2.3659 \times 10^{-4}}\left(\dfrac{mole}{cup}\right)$$