# Convert peta to zetta

Learn how to convert 1 peta to zetta step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(peta\right)={\color{rgb(20,165,174)} x}\left(zetta\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } peta \text{ } is \text{ } 10^{15}$$
$$The \text{ } value \text{ } of \text{ } zetta \text{ } is \text{ } 10^{21}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(peta\right)={\color{rgb(20,165,174)} x}\left(zetta\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{15}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{21}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{15}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{21}}$$
$$\text{Conversion Equation}$$
$$10^{15} = {\color{rgb(20,165,174)} x} \times 10^{21}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{15}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancelto{10^{6}}{10^{21}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{6} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{6}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{6} \times \dfrac{1.0}{10^{6}} = \times \dfrac{1.0}{10^{6}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{6}}}} = \dfrac{1.0}{10^{6}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{6}}$$
Rewrite equation
$$\dfrac{1.0}{10^{6}}\text{ can be rewritten to }10^{-6}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-6}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{-6}$$
$$\text{Conversion Equation}$$
$$1.0\left(peta\right) = {\color{rgb(20,165,174)} 10^{-6}}\left(zetta\right)$$