# Convert tera to peta

Learn how to convert 1 tera to peta step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(tera\right)={\color{rgb(20,165,174)} x}\left(peta\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } tera \text{ } is \text{ } 10^{12}$$
$$The \text{ } value \text{ } of \text{ } peta \text{ } is \text{ } 10^{15}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(tera\right)={\color{rgb(20,165,174)} x}\left(peta\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{12}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{15}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{12}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{15}}$$
$$\text{Conversion Equation}$$
$$10^{12} = {\color{rgb(20,165,174)} x} \times 10^{15}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{12}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancelto{10^{3}}{10^{15}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{3} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{3} \times \dfrac{1.0}{10^{3}} = \times \dfrac{1.0}{10^{3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{3}}}} = \dfrac{1.0}{10^{3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-3}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(tera\right) = {\color{rgb(20,165,174)} 10^{-3}}\left(peta\right)$$