# Convert zetta to micro

Learn how to convert 1 zetta to micro step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(zetta\right)={\color{rgb(20,165,174)} x}\left(micro\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } zetta \text{ } is \text{ } 10^{21}$$
$$The \text{ } value \text{ } of \text{ } micro \text{ } is \text{ } 10^{-6}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(zetta\right)={\color{rgb(20,165,174)} x}\left(micro\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{21}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-6}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{21}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-6}}$$
$$\text{Conversion Equation}$$
$$10^{21} = {\color{rgb(20,165,174)} x} \times 10^{-6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-6} = 10^{21}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-6}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-6} \times \dfrac{1.0}{10^{-6}} = 10^{21} \times \dfrac{1.0}{10^{-6}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-6}}}} = 10^{21} \times \dfrac{1.0}{10^{-6}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{21}}{10^{-6}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{6} \times 10^{21}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 10^{27}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{27}$$
$$\text{Conversion Equation}$$
$$1.0\left(zetta\right) = {\color{rgb(20,165,174)} 10^{27}}\left(micro\right)$$