# Convert deci to centi

Learn how to convert 1 deci to centi step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(deci\right)={\color{rgb(20,165,174)} x}\left(centi\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } deci \text{ } is \text{ } 10^{-1}$$
$$The \text{ } value \text{ } of \text{ } centi \text{ } is \text{ } 10^{-2}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(deci\right)={\color{rgb(20,165,174)} x}\left(centi\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-1}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-2}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-1}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-2}}$$
$$\text{Conversion Equation}$$
$$10^{-1} = {\color{rgb(20,165,174)} x} \times 10^{-2}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-2}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 10^{-1}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-1} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-1}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-1} \times \dfrac{1.0}{10^{-1}} = \times \dfrac{1.0}{10^{-1}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-1}}}} = \dfrac{1.0}{10^{-1}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{10^{-1}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10.0$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10$$
$$\text{Conversion Equation}$$
$$1.0\left(deci\right) = {\color{rgb(20,165,174)} 10}\left(centi\right)$$